Orthogonal Systems in Vector Spaces over Finite Rings

نویسندگان

  • Thang Van Pham
  • Anh Vinh Le
چکیده

We prove that if a subset of the d-dimensional vector space over the ring of integers modulo pr is large enough, then the number of k-tuples of mutually orthogonal vectors in this set is close to its expected value.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Systems in Vector Spaces over Finite Fields

We prove that if a subset of the d-dimensional vector space over a finite field is large enough, then it contains many k-tuples of mutually orthogonal vectors.

متن کامل

On the Number of Orthogonal Systems in Vector Spaces over Finite Fields

Iosevich and Senger (2008) showed that if a subset of the d-dimensional vector space over a finite field is large enough, then it contains many k-tuples of mutually orthogonal vectors. In this note, we provide a graph theoretic proof of this result.

متن کامل

Vector Spaces, Modules over Chinese Rings, and Monoids as Unions of Proper Subobjects

Given a vector space V over a field (of size at least 1), we find a sharp bound for the minimal number (or in general, indexing set) of subspaces of a fixed (finite) codimension needed to cover V . If V is a finite set, this is related to the problem of partitioning V into subspaces. We also consider the analogous problem (involving proper subobjects only) for direct sums of cyclic monoids, cyc...

متن کامل

Cyclic wavelet systems in prime dimensional linear vector spaces

Finite affine groups are given by groups of translations and di- lations on finite cyclic groups. For cyclic groups of prime order we develop a time-scale (wavelet) analysis and show that for a large class of non-zero window signals/vectors, the generated full cyclic wavelet system constitutes a frame whose canonical dual is a cyclic wavelet frame.

متن کامل

Hyperexponential Solutions of Finite-rank Ideals in Orthogonal Ore Algebras (the General Case)

An orthogonal Ore algebra is an abstraction of common properties of linear partial differential, shift and q-shift operators. Using orthogonal Ore algebras, we present an algorithm for finding hyperexponential solutions of a system of linear differential, shift and q-shift operators, or any mixture thereof, whose solution space is finite-dimensional. The algorithm is applicable to factoring mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012